Función biyectiva — Ejemplo de función biyectiva. En matemática, una función es biyectiva si es al mismo tiempo inyectiva y sobreyectiva; es decir, si todos los elementos del conjunto de salida tienen una imagen distinta en el conjunto de llegada, y a cada elemento… … Wikipedia Español
Función inyectiva — Ejemplo de función inyectiva. En matemáticas, una función es inyectiva si a cada valor del conjunto (dominio) le corresponde un valor distinto en el conjunto (imagen) de … Wikipedia Español
Función sobreyectiva — Ejemplo de función sobreyectiva. En matemática, una función es sobreyectiva (epiyectiva, suprayectiva, suryectiva, exhaustiva o subyectiva), si está aplicada sobre todo el codominio, es decir, cuando la imagen , o en palabras más sencillas, cu … Wikipedia Español
Función matemática — En la imagen se muestra una función entre un conjunto de polígonos y un conjunto de números. A cada polígono le corresponde su número de lados. En matemáticas, se dice que una magnitud o cantidad es función de otra si el valor de la primera… … Wikipedia Español
Función recíproca — Definición Sea f una función real biyectiva, cuyo dominio (conjunto de definición) es I y cuyo conjunto imagen es J = f(I). Por ser biyectiva, f admite una función recíproca o inversa, denotada f 1. Definición: g es la función recíproca de f si… … Enciclopedia Universal
Función recíproca — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar … Wikipedia Español
Función exponencial — Funciones exponenciales Gráfica de Funciones exponenciales Definición … Wikipedia Español
Teorema de la función inversa — En la rama de la matemática denominada análisis matemático, el teorema de la función inversa proporciona las condiciones suficientes para que una aplicación sea invertible localmente en un entorno de un punto p en términos de su derivada en dicho … Wikipedia Español
Funciones abiertas y cerradas — En topología, una función abierta es una función entre dos espacios topológicos cuando la imagen de un conjunto abierto es un conjunto abierto. Es decir, una función f: X → Y es abierta si para cualquier conjunto abierto U en X, la imagen f(U) es … Wikipedia Español
Número cardinal — Este artículo trata sobre la definicón elemental de número cardinal. Para la definición en teoría de conjuntos, véase Número cardinal (teoría de conjuntos). El cardinal indica el número o cantidad de elementos de un conjunto, sea esta cantidad… … Wikipedia Español